Nonexistence of Singular Pseudo-Self-Similar Solutions of the Navier-Stokes System

Judith R. Miller*
Department of Mathematics, Georgetown University, Washington D.C. 20057
Mike O'Leary
Department of Mathematics, Towson University, Towson, MD 21252
Maria Schonbek
Mathematics Department, University of California Santa Cruz, Santa Cruz, CA 95064

Abstract

We show that there are no singular pseudo-self-similar solutions of the Navier-Stokes system with finite energy.

1 Introduction

In his 1934 pioneering paper, Jean Leray [1] asked whether it is possible to construct a self-similar solution to the Navier-Stokes system in \mathbf{R}^{3}

$$
\begin{gather*}
\frac{\partial \mathbf{u}}{\partial t}-\Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0 \tag{1}\\
\operatorname{div} \mathbf{u}=0 \tag{2}
\end{gather*}
$$

of the form

$$
\begin{align*}
& \mathbf{u}(x, t)=\frac{1}{\sqrt{T-t}} \mathbf{U}\left(\frac{x}{\sqrt{T-t}}\right), \tag{3}\\
& p(x, t)=\frac{1}{T-t} P\left(\frac{x}{\sqrt{T-t}}\right) . \tag{4}
\end{align*}
$$

The motivation for studying such of solutions is that they would possess a singularity when $t=T$; indeed $\|\nabla \mathbf{u}(\cdot, t)\|_{L_{2}\left(\mathbf{R}^{3}\right)}=\frac{1}{\sqrt{T-t}}\|\nabla \mathbf{U}\|_{L_{2}\left(\mathbf{R}^{3}\right)}$. This question was first answered in 1996 by Nečas, Růžička, and Sverák in the negative. Specifically, in [3], they showed that the only self-similar solution with $\mathbf{U} \in L_{3}\left(\mathbf{R}^{3}\right) \cap W_{2, l o c}^{1}\left(\mathbf{R}^{3}\right)$ is the trivial solution. Later, Málek, Nečas, Pokorný, and Schonbek [2] showed that any self-similar solution with $\mathbf{U} \in W_{2}^{1}\left(\mathbf{R}^{3}\right)$ was

[^0]trivial, and this was extended to solutions that merely have locally finite energy by Tsai in $[5,6]$.

In [2], Nečas posed an extension of the original problem of Leray, namely could we construct pseudo-self-similar solutions of the Navier-Stokes system of the form

$$
\begin{align*}
\mathbf{u}(x, t) & =\mu(t) \mathbf{U}(\lambda(t) x) \tag{5}\\
p(x, t) & =\mu^{2}(t) P(\lambda(t) x) \tag{6}
\end{align*}
$$

for all $t<T$ and some $T>0$ where $\lambda, \mu \in C^{1}[0, T)$. Like the self-similar solutions, it was hoped that pseudo-self-similar solutions would provide an example of a singular solution to the Navier-Stokes system. In that paper [2] Málek, Nečas, Pokorný, and Schonbek were only able to give a partial answer to this problem. They showed that if there was a constant c so that $\lambda=c \mu$, then the problem could be reduced to the self-similar case, and hence $\mathbf{u}=0$. Further, possibly singular solutions for which

$$
\begin{equation*}
\lambda(t)=(T-t)^{-\gamma_{1}} \quad \mu(t)=(T-t)^{-\gamma_{2}} \tag{7}
\end{equation*}
$$

were also shown to be of the Leray type, so that $\gamma_{1}=\gamma_{2}=1 / 2$, and hence were trivial. On the other hand, for general λ and μ it was only shown that if such solutions were to exist, then they had a very specific form in frequency space, namely that

$$
\begin{equation*}
\hat{\mathbf{U}}(\xi)=|\xi|^{-\frac{\beta}{c_{2}}} e^{-\frac{|\xi|^{2}}{2 c_{2}}} \mathbf{S}\left(\frac{\xi}{|\xi|}\right) \tag{8}
\end{equation*}
$$

for some function \mathbf{S} and some constants β and c_{2}.
In this paper we close the question by showing that there are no singular pseudo-self-similar solutions of the Navier-Stokes system with finite energy. In particular, we shall prove the following.

Theorem 1 There are no pseudo-self-similar solutions of the Navier-Stokes system that satisfy

$$
\begin{gather*}
\underset{0<t<T}{\operatorname{ess} \sup }\|\mathbf{u}(\cdot, t)\|_{L_{2}\left(\mathbf{R}^{3}\right)}<\infty, \tag{9}\\
\|\nabla \mathbf{u}\|_{L_{2}\left(\mathbf{R}^{3} \times(0, T)\right)}<\infty, \tag{10}\\
\lim _{t \uparrow T}\|\nabla \mathbf{u}(\cdot, t)\|_{L_{2}\left(\mathbf{R}^{3}\right)}=\infty \tag{11}
\end{gather*}
$$

for any T.

2 Proof

Following [2], we can substitute (5) and (6) into (1) and (2) to obtain

$$
\begin{gather*}
\frac{\mu^{\prime}}{\mu^{2} \lambda} \mathbf{U}+\frac{\lambda^{\prime}}{\mu \lambda^{2}}(y \cdot \nabla) \mathbf{U}-\frac{\lambda}{\mu} \triangle \mathbf{U}+(\mathbf{U} \cdot \nabla) \mathbf{U}+\nabla P=0 \tag{12}\\
\operatorname{div} \mathbf{U}=0 \tag{13}
\end{gather*}
$$

The conditions (9)-(10) then imply that $\mathbf{U} \in W_{2}^{1}\left(\mathbf{R}^{3}\right)$. An ordinary differential equation for λ and μ can be found by multiplying (12) by \mathbf{U} and integrating to obtain

$$
\begin{equation*}
\frac{\mu^{\prime}}{\mu^{2} \lambda}-\frac{3}{2} \frac{\lambda^{\prime}}{\mu \lambda^{2}}=-\frac{\lambda}{\mu} K_{3} \tag{14}
\end{equation*}
$$

where $K_{3}=\|\nabla \mathbf{U}\|_{2}^{2} /\|\mathbf{U}\|_{2}^{2}>0$. (The notation here and elsewhere is chosen to be consistent with [2].)

Further it was shown in [2, Lemmas $2.1 \& 2.2]$ that $\mathbf{U} \in W_{2}^{2}\left(\mathbf{R}^{3}\right) \cap L_{\infty}\left(\mathbf{R}^{3}\right)$ and $P \in W_{2}^{2}\left(\mathbf{R}^{3}\right) \cap L_{\infty}\left(\mathbf{R}^{3}\right)$. It was also shown that the requirement $\lambda \neq c \mu$ implies that

$$
\begin{equation*}
\frac{\lambda}{\mu}+\frac{\lambda^{\prime}}{\mu \lambda^{2}} \frac{1}{c_{2}}=K_{2} \tag{15}
\end{equation*}
$$

for some $c_{2}>0$ and some K_{2}. It was already noted in [2] that if $K_{2}=0$ then the solution is nonsingular, so we shall reserve our primary attention for the case $K_{2} \neq 0$.

Next we shall take advantage of the symmetry of the problem. Indeed, note that if \mathbf{U}, P, λ and μ satisfy (12), (13), (14) and (15), then so does

$$
\begin{array}{lll}
\tilde{\mu}=-\mu, & \tilde{K}_{2}=-K_{2}, & \tilde{\mathbf{U}}=-\mathbf{U}, \quad \tilde{P}=-P \\
\tilde{\lambda}=\lambda, & \tilde{K}_{3}=K_{3}, & \tilde{c}_{2}=c_{2} \tag{17}
\end{array}
$$

As a consequence, we can assume without loss of generality that $K_{2}>0$.
We can then substitute (14) into (12) to obtain

$$
\begin{equation*}
\frac{\lambda^{\prime}}{\mu \lambda^{2}}\left[(y \cdot \nabla) \mathbf{U}+\frac{3}{2} \mathbf{U}\right]-\frac{\lambda}{\mu}\left[\triangle \mathbf{U}+K_{3} \mathbf{U}\right]+(\mathbf{U} \cdot \nabla) \mathbf{U}+\nabla P=0 . \tag{18}
\end{equation*}
$$

Next, use (15) to substitute for the λ / μ factor to obtain

$$
\begin{align*}
\frac{\lambda^{\prime}}{\mu \lambda^{2}}\left[(y \cdot \nabla) \mathbf{U}+\frac{3}{2} \mathbf{U}\right]-\left(K_{2}-\frac{1}{c_{2}} \frac{\lambda^{\prime}}{\mu \lambda^{2}}\right)[\triangle \mathbf{U}+ & \left.K_{3} \mathbf{U}\right] \\
& +(\mathbf{U} \cdot \nabla) \mathbf{U}+\nabla P=0 \tag{19}
\end{align*}
$$

Combining like terms, we find that

$$
\begin{align*}
&-K_{2}\left(\triangle \mathbf{U}+K_{3} \mathbf{U}\right)+(\mathbf{U} \cdot \nabla) \mathbf{U}+\nabla P \\
&=\left[-\frac{1}{c_{2}}\left(\triangle \mathbf{U}+K_{3} \mathbf{U}\right)-(y \cdot \nabla) \mathbf{U}-\frac{3}{2} \mathbf{U}\right] \frac{\lambda^{\prime}}{\mu \lambda^{2}} \tag{20}
\end{align*}
$$

Since the left side is independent of t, we know that the right side must be constant in t; thus either the first factor is zero or $\lambda^{\prime} / \mu \lambda^{2}$ is a constant in time. The latter case is disallowed because (15) would imply that λ / μ is constant. Since the first factor is zero, the whole right side is zero and we have the equations

$$
\begin{equation*}
-K_{2}\left(\triangle \mathbf{U}+K_{3} \mathbf{U}\right)+(\mathbf{U} \cdot \nabla) \mathbf{U}+\nabla P=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{1}{c_{2}}\left(\triangle \mathbf{U}+K_{3} \mathbf{U}\right)-(y \cdot \nabla) \mathbf{U}-\frac{3}{2} \mathbf{U}=0 \tag{22}
\end{equation*}
$$

We remark that if we make the substitution $K_{3}=-\beta+(3 / 2) c_{2}$ and then take the Fourier transform of the second equation, we obtain

$$
\begin{equation*}
-|\xi|^{2} \hat{\mathbf{U}}+\left(3 c_{2}-\beta\right) \hat{\mathbf{U}}+c_{2}\left(-|\xi| \frac{\partial}{\partial|\xi|} \hat{\mathbf{U}}-3 \hat{\mathbf{U}}\right)=0 . \tag{23}
\end{equation*}
$$

If we solve the resulting ordinary differential equation for the radial part of $\hat{\mathbf{U}}$, we obtain (8).

Let $a \in \mathbf{R}$ be determined later and set

$$
\begin{align*}
\tilde{\mathbf{U}} & =\mathbf{U}+a y \tag{24}\\
\tilde{P} & =P-\frac{1}{2} a^{2}|y|^{2} . \tag{25}
\end{align*}
$$

Substitute this into (21) to obtain the equation

$$
\begin{equation*}
-K_{2} \triangle \tilde{\mathbf{U}}+(\tilde{\mathbf{U}} \cdot \nabla) \tilde{\mathbf{U}}-a(y \cdot \nabla) \mathbf{U}+\nabla \tilde{P}=K_{2} K_{3} \mathbf{U}+a \mathbf{U} \tag{26}
\end{equation*}
$$

Then use (22) to substitute for $(y \cdot \nabla) \mathbf{U}$, giving us

$$
\begin{equation*}
-\left(K_{2}-\frac{a}{c_{2}}\right) \triangle \tilde{\mathbf{U}}+(\tilde{\mathbf{U}} \cdot \nabla) \tilde{\mathbf{U}}+\nabla \tilde{P}=\left[K_{2} K_{3}-a\left(\frac{1}{2}+\frac{K_{3}}{c_{2}}\right)\right] \mathbf{U} . \tag{27}
\end{equation*}
$$

Set

$$
\begin{equation*}
a=\frac{K_{2} K_{3}}{\frac{1}{2}+\frac{K_{3}}{c_{2}}}=K_{2} c_{2} \frac{2 K_{3}}{c_{2}+2 K_{3}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu=K_{2}-\frac{a}{c_{2}}=K_{2}\left(1-\frac{2 K_{3}}{c_{2}+2 K_{3}}\right)=\frac{c_{2} K_{2}}{2 K_{3}+c_{2}} . \tag{29}
\end{equation*}
$$

Our restrictions on c_{2}, K_{2}, and K_{3} imply that $\nu>0$; hence

$$
\begin{align*}
-\nu \triangle \tilde{\mathbf{U}}+(\tilde{\mathbf{U}} \cdot \nabla) \tilde{\mathbf{U}}+\nabla \tilde{P} & =0, \tag{30}\\
\operatorname{div} \tilde{\mathbf{U}} & =3 a . \tag{31}
\end{align*}
$$

We can multiply (30) by $\tilde{\mathbf{U}}$ to obtain

$$
\begin{equation*}
-\nu \triangle\left(\frac{1}{2}|\tilde{\mathbf{U}}|^{2}\right)+(\tilde{\mathbf{U}} \cdot \nabla)\left(\frac{1}{2}|\tilde{\mathbf{U}}|^{2}\right)+(\tilde{\mathbf{U}} \cdot \nabla) \tilde{P}+\nu|\nabla \tilde{\mathbf{U}}|^{2}=0 . \tag{32}
\end{equation*}
$$

On the other hand, if we take the divergence of (30), we find

$$
\begin{equation*}
-\nu \triangle(\operatorname{div} \tilde{\mathbf{U}})+\frac{\partial \tilde{U}_{i}}{\partial y_{j}} \frac{\partial \tilde{U}_{j}}{\partial y_{i}}+\tilde{U}_{j} \frac{\partial}{\partial y_{j}}(\operatorname{div} \tilde{\mathbf{U}})+\triangle \tilde{P}=0 \tag{33}
\end{equation*}
$$

then since $\operatorname{div} \tilde{\mathbf{U}}=3 a$ is constant,

$$
\begin{equation*}
\Delta \tilde{P}=-\frac{\partial \tilde{U}_{i}}{\partial y_{j}} \frac{\partial \tilde{U}_{j}}{\partial y_{i}} \tag{34}
\end{equation*}
$$

Substitute this into (32) to obtain

$$
\begin{equation*}
-\nu \triangle\left(\frac{1}{2}|\tilde{\mathbf{U}}|^{2}+\tilde{P}\right)+(\tilde{\mathbf{U}} \cdot \nabla)\left(\frac{1}{2}|\tilde{\mathbf{U}}|^{2}+\tilde{P}\right)+\nu\left(|\nabla \tilde{\mathbf{U}}|^{2}-\frac{\partial \tilde{U}_{i}}{\partial y_{j}} \frac{\partial \tilde{U}_{j}}{\partial y_{i}}\right)=0 \tag{35}
\end{equation*}
$$

If we define

$$
\begin{align*}
X & =\frac{1}{2}|\tilde{\mathbf{U}}|^{2}+\tilde{P} \\
& =\frac{1}{2}(\mathbf{U}+a y) \cdot(\mathbf{U}+a y)+P-\frac{1}{2} a^{2}|y|^{2} \tag{36}\\
& =\frac{1}{2}|\mathbf{U}|^{2}+P+a(\mathbf{U} \cdot y)
\end{align*}
$$

then we find

$$
\begin{equation*}
-\nu \triangle X+(\tilde{\mathbf{U}} \cdot \nabla) X+\nu\left(|\nabla \tilde{\mathbf{U}}|^{2}-\frac{\partial \tilde{U}_{i}}{\partial y_{j}} \frac{\partial \tilde{U}_{j}}{\partial y_{i}}\right)=0 \tag{37}
\end{equation*}
$$

Next we would like to replace $\tilde{\mathbf{U}}$ by \mathbf{U}. We note that

$$
\begin{equation*}
|\nabla \tilde{\mathbf{U}}|^{2}=|\nabla \mathbf{U}|^{2}+2 a \operatorname{div} \mathbf{U}+a^{2} \delta_{i j} \delta_{i j}=|\nabla \mathbf{U}|^{2}+3 a^{2} \tag{38}
\end{equation*}
$$

while

$$
\begin{equation*}
\frac{\partial \tilde{U}_{i}}{\partial y_{j}} \frac{\partial \tilde{U}_{j}}{\partial y_{i}}=\frac{\partial U_{i}}{\partial y_{j}} \frac{\partial U_{j}}{\partial y_{i}}+2 a \operatorname{div} \mathbf{U}+3 a^{2}=\frac{\partial U_{i}}{\partial y_{j}} \frac{\partial U_{j}}{\partial y_{i}}+3 a^{2} \tag{39}
\end{equation*}
$$

Making the substitutions, we find that

$$
\begin{equation*}
-\nu \triangle X+(\mathbf{U} \cdot \nabla) X+a(y \cdot \nabla) X+\nu\left(|\nabla \mathbf{U}|^{2}-\frac{\partial U_{i}}{\partial y_{j}} \frac{\partial U_{j}}{\partial y_{i}}\right)=0 \tag{40}
\end{equation*}
$$

In [2, Lemma 3.2] the following was proven.
Lemma 2 Let $a>0, \nu>0$, and suppose that

$$
\begin{equation*}
-\nu \triangle X+(\mathbf{U} \cdot \nabla) X+a(y \cdot \nabla) X \leq 0 \tag{41}
\end{equation*}
$$

Then either $X \leq 0$ or X is a positive constant.
For the reader's convenience, we shall sketch the proof. For $\beta>0$, define $X_{\beta}=X e^{-\beta|y|^{2}}$. Then

$$
\begin{equation*}
-\nu \triangle X_{\beta}+b_{j}(y) \frac{\partial X_{\beta}}{\partial y_{j}}+b(y) X_{\beta} \leq 0 \tag{42}
\end{equation*}
$$

where $b_{j}(y)=U_{j}(y)+(a-4 \beta \nu) y_{j}$ and

$$
\begin{equation*}
b(y)=2 \beta\left(a|y|^{2}-2 \beta \nu|y|^{2}+\mathbf{U} \cdot y-3 \nu\right) \tag{43}
\end{equation*}
$$

We can find $\beta_{o}>0$ so that $b(y)>0$ if $0<\beta<\beta_{o}$ and $|y| \geq R$; choose such a pair. Let $M=\max _{|y|=R} X$ and let us first suppose that $M>0$. Because \mathbf{U}
and P are bounded, there exists some $R_{\beta}>R$ so that $X_{\beta}(y)<M / 2$ for all $|y|>R_{\beta}$. Applying the maximum principle to (42) on annuli, we conclude that $X_{\beta} \leq M e^{-\beta R^{2}}$ if $|y| \geq R$. Letting $\beta \downarrow 0$ we see that $X \leq M$ if $|y| \geq R$. Apply the strong maximum principle for (41) on B_{ρ} for $\rho>R$; since the maximum is achieved in B_{ρ} on $|y|=R$, we conclude that X is constant in B_{ρ} for all $\rho>R$.

Suppose that $M \leq 0$. The boundedness of \mathbf{U} and P imply that for all $\epsilon>0$ there is some $R_{\epsilon}>R$ so that $X_{\beta}(y)<\epsilon$ if $|y|>R_{\epsilon}$. Applying the maximum principle for (42) on annuli we conclude that $X_{\beta} \leq \epsilon$ if $|y|>R$ and since ϵ is arbitrary, that $X \leq 0$ if $|y|>R$. Apply the maximum principle once more on B_{ρ} for $\rho>R$ to conclude that $X \leq 0$. This proves the lemma.

We can strengthen Lemma 1 as follows. If we set

$$
\begin{equation*}
X^{*}=X+c \tag{44}
\end{equation*}
$$

for some constant c, we see that X^{*} also satisfies (41). Repeating the previous argument for X^{*} we find that either $X+c \leq 0$ for all constants c, or X is constant; we conclude that X is constant.

Because the last term in (40) is nonnegative we can apply this result to conclude that X is constant. As a consequence, (40) reduces to the equation

$$
\begin{equation*}
|\nabla \mathbf{U}|^{2}=\frac{\partial U_{i}}{\partial y_{j}} \frac{\partial U_{j}}{\partial y_{i}} \tag{45}
\end{equation*}
$$

Integrate this over \mathbf{R}^{3} to see that

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}|\nabla \mathbf{U}|^{2}=-\int_{\mathbf{R}^{3}} U_{i} \frac{\partial}{\partial y_{j}} \frac{\partial U_{i}}{\partial y_{j}}=-\int_{\mathbf{R}^{3}} U_{i} \frac{\partial}{\partial y_{i}} \operatorname{div} \mathbf{U}=0 \tag{46}
\end{equation*}
$$

thus \mathbf{U} is a constant. Since $\mathbf{U} \in L_{2}\left(\mathbf{R}^{3}\right)$, we conclude that $\mathbf{U}=0$.

3 Nontrivial Pseudo-Self-Similar Solutions

The preceding argument did more than show that there are no singular pseudo-self-similar solutions of the Navier-Stokes system. In fact, it shows that every pseudo-self-similar solution with finite energy is trivial, at least in the case where $K_{2} \neq 0$. It was already shown in [2] that if $K_{2}=0$ then the solution is nonsingular; we shall now present some additional remarks about what occurs in this case.

If $K_{2}=0$ we can solve (15) directly for $\lambda(t)$ to determine that

$$
\begin{equation*}
\lambda(t)=\frac{\lambda_{o}}{\sqrt{1+2 \lambda_{o}^{2} c_{2} t}} \tag{47}
\end{equation*}
$$

for some arbitrary constant λ_{o}. We can then use (14) to see that

$$
\begin{equation*}
\mu(t)=\frac{\mu_{o}}{\left(1+2 \lambda_{o}^{2} c_{2} t\right)^{\frac{3}{2}+\frac{K_{3}}{c_{2}}}} \tag{48}
\end{equation*}
$$

where μ_{o} is also arbitrary.
The question of whether or not there exist nontrivial pseudo-self-similar solutions with finite energy in this form is still open. We remark that if $\mathbf{u}(x, t)$ and $p(x, t)$ are pseudo-self-similar solutions in this form, then so is $k^{\alpha} \mathbf{u}\left(k x, k^{2} t\right)$ and $k^{2 \alpha} p\left(k x, k^{2} t\right)$ for any α and k. Using this scaling in the Navier-Stokes system then implies that \mathbf{u} and p must satisfy

$$
\begin{equation*}
(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0 \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{u}_{t}-\triangle \mathbf{u}=0 \tag{50}
\end{equation*}
$$

Note that these are equivalent to (21) and (22) respectively with $K_{2}=0 . \mathrm{Fi}$ nally, we remark that it is known that (49) and (50) have nontirival solutions in an even number of spatial dimensions; see [4, Theorem 5.1].

References

[1] J. Leray, Sue le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248.
[2] J. Málek, J. Nečas, M. Pokorný, and M. Schonbek, On possible singular solutions to the Navier-Stokes equations, Math. Nachr. 199 (1999), 97-114.
[3] J. Nečas, M. Růžička, and V. Šverák, On self-similar solutions of the NavierStokes equations, Acta Math. 176 (1996), 283-294.
[4] M.E. Schonbek, T.P. Schonbek, and E. Süli, Large time behavior of solutions to the magneto-hydrodynamic equations, Math. Ann. 304 (1996), 717-756.
[5] T.-P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rat. Mech. Anal. 143 (1998), 29-51.
[6] T.-P. Tsai, Erratum: On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rat. Mech. Anal. 147 (1999), 363.

[^0]: *Research partially supported by NSF grant DMS-9804814

