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Abstract

We show that there are no singular pseudo-self-similar solutions of the
Navier-Stokes system with finite energy.

1 Introduction

In his 1934 pioneering paper, Jean Leray [1] asked whether it is possible to
construct a self-similar solution to the Navier-Stokes system in R3

∂u
∂t

−4u + (u·∇)u +∇p = 0, (1)

div u = 0 (2)

of the form

u(x, t) =
1√

T − t
U

(
x√

T − t

)
, (3)

p(x, t) =
1

T − t
P

(
x√

T − t

)
. (4)

The motivation for studying such of solutions is that they would possess a
singularity when t = T ; indeed ||∇u(·, t)||L2(R3) = 1√

T−t
||∇U||L2(R3). This ques-

tion was first answered in 1996 by Nečas, Růžička, and Šverák in the nega-
tive. Specifically, in [3], they showed that the only self-similar solution with
U ∈ L3(R3)∩W 1

2,loc(R
3) is the trivial solution. Later, Málek, Nečas, Pokorný,

and Schonbek [2] showed that any self-similar solution with U ∈ W 1
2 (R3) was
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trivial, and this was extended to solutions that merely have locally finite energy
by Tsai in [5, 6].

In [2], Nečas posed an extension of the original problem of Leray, namely
could we construct pseudo-self-similar solutions of the Navier-Stokes system of
the form

u(x, t) = µ(t)U(λ(t)x), (5)

p(x, t) = µ2(t)P (λ(t)x), (6)

for all t < T and some T > 0 where λ, µ ∈ C1[0, T ). Like the self-similar solu-
tions, it was hoped that pseudo-self-similar solutions would provide an example
of a singular solution to the Navier-Stokes system. In that paper [2] Málek,
Nečas, Pokorný, and Schonbek were only able to give a partial answer to this
problem. They showed that if there was a constant c so that λ = cµ, then the
problem could be reduced to the self-similar case, and hence u = 0. Further,
possibly singular solutions for which

λ(t) = (T − t)−γ1 µ(t) = (T − t)−γ2 (7)

were also shown to be of the Leray type, so that γ1 = γ2 = 1/2, and hence were
trivial. On the other hand, for general λ and µ it was only shown that if such
solutions were to exist, then they had a very specific form in frequency space,
namely that

Û(ξ) = |ξ|− β
c2 e−

|ξ|2
2c2 S

(
ξ

|ξ|
)

(8)

for some function S and some constants β and c2.
In this paper we close the question by showing that there are no singular

pseudo-self-similar solutions of the Navier-Stokes system with finite energy. In
particular, we shall prove the following.

Theorem 1 There are no pseudo-self-similar solutions of the Navier-Stokes
system that satisfy

ess sup
0<t<T

||u(·, t)||L2(R3) < ∞, (9)

||∇u||L2(R3×(0,T )) < ∞, (10)
lim
t↑T

||∇u(·, t)||L2(R3) = ∞ (11)

for any T .

2 Proof

Following [2], we can substitute (5) and (6) into (1) and (2) to obtain

µ′

µ2λ
U +

λ′

µλ2
(y ·∇)U− λ

µ
4U + (U·∇)U +∇P = 0, (12)

div U = 0. (13)
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The conditions (9)–(10) then imply that U ∈ W 1
2 (R3). An ordinary differential

equation for λ and µ can be found by multiplying (12) by U and integrating to
obtain

µ′

µ2λ
− 3

2
λ′

µλ2
= −λ

µ
K3 (14)

where K3 = ||∇U||22/||U||22 > 0. (The notation here and elsewhere is chosen to
be consistent with [2].)

Further it was shown in [2, Lemmas 2.1 & 2.2] that U ∈ W 2
2 (R3)∩L∞(R3)

and P ∈ W 2
2 (R3) ∩ L∞(R3). It was also shown that the requirement λ 6= cµ

implies that
λ

µ
+

λ′

µλ2

1
c2

= K2 (15)

for some c2 > 0 and some K2. It was already noted in [2] that if K2 = 0 then
the solution is nonsingular, so we shall reserve our primary attention for the
case K2 6= 0.

Next we shall take advantage of the symmetry of the problem. Indeed, note
that if U, P , λ and µ satisfy (12), (13), (14) and (15), then so does

µ̃ = −µ, K̃2 = −K2, Ũ = −U, P̃ = −P, (16)

λ̃ = λ, K̃3 = K3, c̃2 = c2. (17)

As a consequence, we can assume without loss of generality that K2 > 0.
We can then substitute (14) into (12) to obtain

λ′

µλ2

[
(y ·∇)U +

3
2
U

]
− λ

µ
[4U + K3U] + (U·∇)U +∇P = 0. (18)

Next, use (15) to substitute for the λ/µ factor to obtain

λ′

µλ2

[
(y ·∇)U +

3
2
U

]
−

(
K2 − 1

c2

λ′

µλ2

)
[4U + K3U]

+ (U·∇)U +∇P = 0. (19)

Combining like terms, we find that

−K2(4U + K3U) + (U·∇)U +∇P

=
[
− 1

c2
(4U + K3U)− (y ·∇)U− 3

2
U

]
λ′

µλ2
(20)

Since the left side is independent of t, we know that the right side must be con-
stant in t; thus either the first factor is zero or λ′/µλ2 is a constant in time. The
latter case is disallowed because (15) would imply that λ/µ is constant. Since
the first factor is zero, the whole right side is zero and we have the equations

−K2(4U + K3U) + (U·∇)U +∇P = 0 (21)
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and
− 1

c2
(4U + K3U)− (y ·∇)U− 3

2
U = 0. (22)

We remark that if we make the substitution K3 = −β + (3/2)c2 and then
take the Fourier transform of the second equation, we obtain

−|ξ|2Û + (3c2 − β)Û + c2

(
−|ξ| ∂

∂|ξ|Û− 3Û
)

= 0. (23)

If we solve the resulting ordinary differential equation for the radial part of Û,
we obtain (8).

Let a ∈ R be determined later and set

Ũ = U + ay, (24)

P̃ = P − 1
2a2|y|2. (25)

Substitute this into (21) to obtain the equation

−K24Ũ + (Ũ·∇)Ũ− a(y ·∇)U +∇P̃ = K2K3U + aU. (26)

Then use (22) to substitute for (y ·∇)U, giving us

−
(

K2 − a

c2

)
4Ũ + (Ũ·∇)Ũ +∇P̃ =

[
K2K3 − a

(
1
2

+
K3

c2

)]
U. (27)

Set
a =

K2K3

1
2 + K3

c2

= K2c2
2K3

c2 + 2K3
(28)

and

ν = K2 − a

c2
= K2

(
1− 2K3

c2 + 2K3

)
=

c2K2

2K3 + c2
. (29)

Our restrictions on c2, K2, and K3 imply that ν > 0; hence

−ν4Ũ + (Ũ·∇)Ũ +∇P̃ = 0, (30)

div Ũ = 3a. (31)

We can multiply (30) by Ũ to obtain

−ν4( 1
2 |Ũ|2) + (Ũ·∇)( 1

2 |Ũ|2) + (Ũ·∇)P̃ + ν|∇Ũ|2 = 0. (32)

On the other hand, if we take the divergence of (30), we find

−ν4(div Ũ) +
∂Ũi

∂yj

∂Ũj

∂yi
+ Ũj

∂

∂yj
(div Ũ) +4P̃ = 0; (33)

then since div Ũ = 3a is constant,

4P̃ = −∂Ũi

∂yj

∂Ũj

∂yi
. (34)
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Substitute this into (32) to obtain

−ν4( 1
2 |Ũ|2 + P̃ ) + (Ũ·∇)( 1

2 |Ũ|2 + P̃ ) + ν

(
|∇Ũ|2 − ∂Ũi

∂yj

∂Ũj

∂yi

)
= 0. (35)

If we define

X = 1
2 |Ũ|2 + P̃

= 1
2 (U + ay)·(U + ay) + P − 1

2a2|y|2
= 1

2 |U|2 + P + a(U·y)

(36)

then we find

−ν4X + (Ũ·∇)X + ν

(
|∇Ũ|2 − ∂Ũi

∂yj

∂Ũj

∂yi

)
= 0. (37)

Next we would like to replace Ũ by U. We note that

|∇Ũ|2 = |∇U|2 + 2adiv U + a2δijδij = |∇U|2 + 3a2 (38)

while
∂Ũi

∂yj

∂Ũj

∂yi
=

∂Ui

∂yj

∂Uj

∂yi
+ 2adiv U + 3a2 =

∂Ui

∂yj

∂Uj

∂yi
+ 3a2. (39)

Making the substitutions, we find that

−ν4X + (U·∇)X + a(y ·∇)X + ν

(
|∇U|2 − ∂Ui

∂yj

∂Uj

∂yi

)
= 0. (40)

In [2, Lemma 3.2] the following was proven.

Lemma 2 Let a > 0, ν > 0, and suppose that

−ν4X + (U·∇)X + a(y ·∇)X ≤ 0. (41)

Then either X ≤ 0 or X is a positive constant.

For the reader’s convenience, we shall sketch the proof. For β > 0, define
Xβ = Xe−β|y|2 . Then

−ν4Xβ + bj(y)
∂Xβ

∂yj
+ b(y)Xβ ≤ 0 (42)

where bj(y) = Uj(y) + (a− 4βν)yj and

b(y) = 2β(a|y|2 − 2βν|y|2 + U·y − 3ν). (43)

We can find βo > 0 so that b(y) > 0 if 0 < β < βo and |y| ≥ R; choose such
a pair. Let M = max|y|=R X and let us first suppose that M > 0. Because U
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and P are bounded, there exists some Rβ > R so that Xβ(y) < M/2 for all
|y| > Rβ . Applying the maximum principle to (42) on annuli, we conclude that
Xβ ≤ Me−βR2

if |y| ≥ R. Letting β ↓ 0 we see that X ≤ M if |y| ≥ R. Apply
the strong maximum principle for (41) on Bρ for ρ > R; since the maximum is
achieved in Bρ on |y| = R, we conclude that X is constant in Bρ for all ρ > R.

Suppose that M ≤ 0. The boundedness of U and P imply that for all ε > 0
there is some Rε > R so that Xβ(y) < ε if |y| > Rε. Applying the maximum
principle for (42) on annuli we conclude that Xβ ≤ ε if |y| > R and since ε is
arbitrary, that X ≤ 0 if |y| > R. Apply the maximum principle once more on
Bρ for ρ > R to conclude that X ≤ 0. This proves the lemma.

We can strengthen Lemma 1 as follows. If we set

X∗ = X + c (44)

for some constant c, we see that X∗ also satisfies (41). Repeating the previous
argument for X∗ we find that either X + c ≤ 0 for all constants c, or X is
constant; we conclude that X is constant.

Because the last term in (40) is nonnegative we can apply this result to
conclude that X is constant. As a consequence, (40) reduces to the equation

|∇U|2 =
∂Ui

∂yj

∂Uj

∂yi
. (45)

Integrate this over R3 to see that
∫

R3
|∇U|2 = −

∫

R3
Ui

∂

∂yj

∂Ui

∂yj
= −

∫

R3
Ui

∂

∂yi
div U = 0; (46)

thus U is a constant. Since U ∈ L2(R3), we conclude that U = 0.

3 Nontrivial Pseudo-Self-Similar Solutions

The preceding argument did more than show that there are no singular pseudo-
self-similar solutions of the Navier-Stokes system. In fact, it shows that every
pseudo-self-similar solution with finite energy is trivial, at least in the case
where K2 6= 0. It was already shown in [2] that if K2 = 0 then the solution is
nonsingular; we shall now present some additional remarks about what occurs
in this case.

If K2 = 0 we can solve (15) directly for λ(t) to determine that

λ(t) =
λo√

1 + 2λ2
oc2t

(47)

for some arbitrary constant λo. We can then use (14) to see that

µ(t) =
µo

(1 + 2λ2
oc2t)

3
2+

K3
c2

(48)
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where µo is also arbitrary.
The question of whether or not there exist nontrivial pseudo-self-similar

solutions with finite energy in this form is still open. We remark that if u(x, t)
and p(x, t) are pseudo-self-similar solutions in this form, then so is kαu(kx, k2t)
and k2αp(kx, k2t) for any α and k. Using this scaling in the Navier-Stokes
system then implies that u and p must satisfy

(u·∇)u +∇p = 0, (49)

and
ut −4u = 0. (50)

Note that these are equivalent to (21) and (22) respectively with K2 = 0. Fi-
nally, we remark that it is known that (49) and (50) have nontirival solutions
in an even number of spatial dimensions; see [4, Theorem 5.1].

References

[1] J. Leray, Sue le mouvement d’un liquide visqueux emplissant l’espace, Acta
Math. 63 (1934), 193–248.

[2] J. Málek, J. Nečas, M. Pokorný, and M. Schonbek, On possible singular
solutions to the Navier–Stokes equations, Math. Nachr. 199 (1999), 97–114.
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